

Towards a Generalized Bayesian Model of Category Effects

Zihao Xu¹, Pernille Hemmer^{2,3}, and Qiong Zhang^{1,2,3}

Computer Science Department¹, Psychology Department², Center for Cognitive Science³,

Rutgers University–New Brunswick

Category Effect

Recall the size of the apple

People's estimation is biased towards apple's average size.

Category Effect

Category Effect

An individual stimulus from a category is often judged to be closer to the center of that category than its true location.

Category Adjustment Model (CAM) (Huttenlocher et al., 2000)

An individual stimulus from a category is often judged to be closer to the center of that category than its true location.

$$\hat{T} = w\mu_c + (1-w)M$$

 \widehat{T} : Human Recall, μ_c : Category Center, *M*: Noisy Memory, *w*: Constant

Category Effect

Category Adjustment Model (CAM) (Huttenlocher et al., 2000)

True stimulus T is drawn from a category c.

$$T \sim N(\mu_c, \sigma_c^2)$$

M is a noisy memory centered around true stimulus T. $M|T \sim N(T, \sigma_T^2)$

Reconstruction of the true stimulus T.

$$\hat{T} = w\mu_c + (1-w)M$$

$$w = \frac{\sigma_T^2}{\sigma_c^2 + \sigma_T^2}$$

Category Effect

Category Adjustment Model (CAM) (Huttenlocher et al., 2000)

$$T = w\mu_c + (1 - w)M$$

 \widehat{T} : Human Recall, μ_c : Category Center, *M*: Noisy Memory, *w*: Constant

Atypical Item Effect

Recall the size of a very **large** apple

People's estimation shows little bias.

Atypical Item Effect

Atypical Item Effect

Atypical items will be less biased towards category center, compared with typical items.

CAM model vs Atypical Item Effect

CAM model prediction

Real world experiment

The CAM model cannot explain the Atypical Item Effect!

Other issues: multiple models for different Category Effects

- Multiple categories co-exist: Perceptual Magnet Effect
- Categories have multiple levels of abstraction: Hierarchical Category Effect

Perceptual Magnet Effect

Perceptual Magnet Effect

- Easier to discriminate speech sounds near a nonprototype of a category than near the prototype (Kuhl, 1991).
- It is as if there is shrinking of perceptual space near category prototypes, with prototypes acting as perceptual magnets that pull in the neighboring stimuli (Kuhl, 1993).

Feldman and Griffiths, 2007

Hierarchical Category Effect

Hierarchical Category Effect

- One can draw from prior knowledge of either mushroom size (object) or vegetable size (category)?
- Depending on the familiarity of the object!

Test phase: what is the size of this vegetable at study?

Hemmer and Steyvers, 2009

Problems about current models on Category Effect

- Cannot explain the Atypical Item Effect
- Multiple models for different Category Effects

A set of Bayesian models that are each developed for a specific task.

A single Bayesian model that can explain a range of experimental effects!

Model

Model

G-CAM

(A.4)

Generalized-CAM model

Calculation of E[T|c, M]

Calculation of p(c|M)

To calculate
$$E[T|c, M]$$
, we will prove that: $p(T|c, M)$ is a normal distribution, with a mean of $\frac{(\mu_c \sigma_s^2 + \sigma_s^2 M)}{\sigma_s^2 + \sigma_s^2}$.

Notice that the generative process in Equation 1 and 2 is a typical normal-normal model, we can obtain the distribution analytically with the following deduction.

Firstly, we will decompose p(T|c, M) using Bayes rule. Since we assume that p(c) has a uniform prior distribution and the likelihood p(c, M) does not change with respect to the variable T, the posterior distribution is proportional to p(M|T)p(T|c).

$$p(T|M,c) = \frac{p(M|T)p(T|c)p(c)}{p(M,c)} \propto p(M|T)p(T|c)$$
(A.5)

Now we further plug in the parameter $\sigma_c, \mu_c, \sigma_T$ in Equation 1 and 2 into the Normal Distribution formula and we obtain the expression of the posterior distribution as shown in Equation A.6.

$$\begin{split} p(T|c) &= \frac{1}{\sqrt{2\pi\sigma_c^2}} \exp\left\{-\frac{(T-\mu_c)^2}{2\sigma_c^2}\right\} \\ p(M|T) &= \frac{1}{\sqrt{2\pi\sigma_T^2}} \exp\left\{-\frac{(M-T)^2}{2\sigma_T^2}\right\} \end{split}$$

(A.6)

 $p(T|M, c) \propto p(M|T)p(T|c)$

$$= \frac{1}{\sqrt{\sigma_c^2 \sigma_T^2}} \exp\left\{\frac{-(T-\mu_c)^2}{2\sigma_c^2} + \frac{-(T-M)^2}{2\sigma_T^2}\right\}$$

We can then convert the term inside the exponential function to a quadratic form shown in Equation A.7:

$$\begin{split} p(M,c) &= \int_{T} p(c,M,T) dT \\ &= \int_{T} P(T|c) p(M|T) dT \\ &= \int_{-\infty}^{+\infty} \frac{1}{2\pi \sigma_{T} \sigma_{c}} \exp\left(-\frac{(T-\mu_{c})^{2}}{2\sigma_{c}^{2}} - \frac{(M-T)^{2}}{2\sigma_{T}^{2}}\right) dT \end{split}$$
(A.1)

Given the fact that the following formula holds for $\forall a \in \mathbb{R}^+, b \in \mathbb{R}, C \in \mathbb{R}^{-1}$:

$$\int_{-\infty}^{+\infty} e^{-ax^2 - bx - m} dx = \frac{\sqrt{\pi}e^{\frac{b^2 - 4a\pi}{4a}}}{\sqrt{a}} \quad (a > 0)$$
 (A.2)

From equation A.1, we can derive that:

$$a = \frac{1}{2\sigma_c^2} + \frac{1}{2\sigma_T^2}, b = -\frac{\mu_c}{\sigma_c^2} - \frac{M}{\sigma_T^2}, m = \frac{\mu_c^2}{2\sigma_c^2} + \frac{M^2}{2\sigma_T^2}$$
(A.3)

Combining equation A.2 and A.3, we can derive p(M, c) and p(c|M).

$$\begin{split} p(M,c) &= \int_{-\infty}^{+\infty} \frac{1}{2\pi\sigma_T\sigma_c} \exp\left(-\frac{(T-\mu_c)^2}{2\sigma_c^2} - \frac{(M-T)^2}{2\sigma_T^2}\right) dT \\ &= \frac{1}{2\pi\sigma_T\sigma_c} \frac{\sqrt{\pi}}{\sqrt{\frac{1}{2\sigma_T^2} + \frac{1}{2\sigma_c^2}}} \exp\left(-\frac{(\mu_c - M)^2}{2\sigma_T^2 + 2\sigma_c^2}\right) \\ &= \frac{1}{\sqrt{2\pi}\sqrt{\sigma_T^2 + \sigma_c^2}} \exp\left(-\frac{(\mu_c - M)^2}{2\sigma_T^2 + 2\sigma_c^2}\right) \\ p(c|M) \propto N\left(\mu_c, \sigma_T^2 + \sigma_c^2\right) \end{split}$$

$$E[T|M] = \Sigma_c E[T|c, M] * p(c|M)$$
$$= \Sigma_c \frac{\sigma_T^2 \mu_c + \sigma_c^2 M}{\sigma_T^2 + \sigma_c^2} * p(c|M)$$

Model

1

G-CAM

Key Insights

$$E[T|M] = \sum_{c} E[T|c, M] * p(c|M)$$
$$= \sum_{c} \frac{\sigma_T^2 \mu_c + \sigma_c^2 M}{\sigma_T^2 + \sigma_c^2} * p(c|M)$$

- The reconstruction of stimulus is first weighted by the inferred category membership p(c|M), out of any number of possible categories.
- Under that category membership c, reconstruction then becomes a weighted combination between the category mean μ_c and the noisy memory M.

Three Category Effects

Category Effects we will cover

- Atypical Item Effect
- Perceptual Magnet Effect
- Hierarchical Category Effect

Atypical Item Effect

Intuition

People actively infer whether a stimulus belongs to that category (c = 1) or not belong to that category (c = 0).

Atypical Item Effect

Implementation

- Set one category as typical examples (c = 1), and a second "category" as atypical examples (c = 0), with large variance.
- Typical Items draw from p(T|c = 1).
- ATypical Items draw from p(T|c = 0).

Atypical Item Effect

- If inferred as typical, biased towards the category mean.
- If inferred as atypical, there is less bias.

Reconstruction of T:

$$E[T|M] = p(c = 1|M) * (w\mu_c + (1 - w)M) + p(c = 0|M) * M$$

Same stimulus reconstruction term in CAM

Perceptual Magnet Effect

Intuition

Two or multiple-category case for the G-CAM model.

Feldman and Griffiths, 2007

Perceptual Magnet Effect

Simulation

Intuition

First infer the category of the stimulus, then reconstruct the stimulus based on the chosen category prior.

Object-level / category-level prior

A Bayesian model of reconstructive memory (Hemmer and Steyvers, 2009)

- A mixture model where the prior mean and variance is a combination of object-level priors and categorylevel priors, weighted by familiarity z.
- Different than CAM, it treats memory noise as an unobserved variable.

 $T \sim N(\mu_0, \sigma_0)$

$$\mu_0 = z\mu_i + (1-z)\mu_c$$

$$\sigma_0^2 = z \sigma_i^2 + (1-z) \sigma_c^2$$

Our model

• When a stimuli is considered part of a object membership (o = 1), it is biased towards the object mean.

$$T|o = 1 \sim N(\mu_o, \sigma_o^2) \qquad E[T \mid o = 1, M] = \frac{M\sigma_o^2 + \mu_o \cdot \sigma_T^2}{\sigma_o^2 + \sigma_T^2} \qquad \text{Familiar}$$

• When a stimuli is identified as not from the object membership (o = 0), it will resort to the prior information from the higher-level category mean.

$$T|o = 0 \sim N(\mu_c, \sigma_c^2) \qquad E[T \mid o = 0, M] = \frac{M\sigma_c^2 + \mu_c \cdot \sigma_T^2}{\sigma_c^2 + \sigma_T^2} \qquad \text{Not familiar}$$

• Same memory noise term as before. $M|T \sim N(T, \sigma_T^2)$

Т

Μ

Hierarchical Category Effect

Simulation

Experiment

(Hemmer and Steyvers, 2009)

- We proposed a generalized CAM model.
- It can account for empirical findings of atypical examples while unifying previous models of category effects.

Qiong Zhang

Assistant Professor in Psychology & Computer Science

Pernille Hemmer

Director of the Human Computational Cognition Laboratory

Thank you & Any questions?

zihao.xu@rutgers.edu Paper: https://osf.io/preprints/psyarxiv/9a7ft/ Perceptual Magnet Effect

Simulation: Atypical Item Effect and Perceptual Magnet Effect

Original Stimulus

E[T|M]: Perceived stimulus